APPLIED CHEMISTRY (with Lab Manual)

Anju Rawlley

Devdatta Vinayakrao Saraf

KHANNA BOOK PUBLISHING CO. (P) LTD.

PUBLISHER OF ENGINEERING AND COMPUTER BOOKS 4C/4344, Ansari Road, Darya Ganj, New Delhi-110002 Phone: 011-23244447-48 **Mobile:** +91-99109 09320 E-mail: contact@khannabooks.com Website: www.khannabooks.com Dear Readers,

To prevent the piracy, this book is secured with HIGH SECURITY HOLOGRAM on the front title cover. In case you don't find the hologram on the front cover title, please write us to at contact@khannabooks.com or whatsapp us at +91-99109 09320 and avail special gift voucher for yourself.

Specimen of Hologram on front Cover title:

Moreover, there is a SPECIAL DISCOUNT COUPON for you with EVERY HOLOGRAM.

How to avail this SPECIAL DISCOUNT:

Step 1: Scratch the hologram

Step 2: Under the scratch area, your "coupon code" is available

Step 3: Logon to www.khannabooks.com

Step 4: Use your "coupon code" in the shopping cart and get your copy at a special discount

Step 5: Enjoy your reading!

ISBN: 978-93-91505-44-8 **Book Code:** DIP121EN

Applied Chemistry by Anju Rawlley,

Devdatta Vinayakrao Saraf [English Edition]

First Edition: 2021

Published by:

Khanna Book Publishing Co. (P) Ltd. Visit us at: www.khannabooks.com Write us at: contact@khannabooks.com *CIN: U22110DL1998PTC095547*

To view complete list of books, Please scan the QR Code:

Copyright © Reserved

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without prior permission of the publisher.

This book is sold subject to the condition that it shall not, by way of trade, be lent, re-sold, hired out or otherwise disposed of without the publisher's consent, in any form of binding or cover other than that in which it is published.

Disclaimer: The website links provided by the author in this book are placed for informational, educational & reference purpose only. The Publisher do not endorse these website links or the views of the speaker/ content of the said weblinks. In case of any dispute, all legal matters to be settled under Delhi Jurisdiction only.

Printed in India

प्रो. अनिल डी. सहम्रबुद्धे अघ्यक्ष Prof. Anil D. Sahasrabudhe ^{Chairman}

सत्यमेव जयते

अखिल भारतीय तकनीकी शिक्षा परिषद् (मारत सरकार का एक सांविधिक निकाय) (शिक्षा मंत्रालय, भारत सरकार) नेल्सन मंडेला मार्ग, वसंत कुज, नई दिल्सी–110070 दूरमाष : 011–26131498 ई–मेल : chairman@aicte-india.org

ALL INDIA COUNCIL FOR TECHNICAL EDUCATION (A STATUTORY BODY OF THE GOVT. OF INDIA) (Ministry of Education, Govt. of India) Nelson Mandela Marg, Vasant Kunj, New Delhi-110070 Phone : 011-26131498 E-mail : chairman@aicte-india.org

FOREWORD

Engineering has played a very significant role in the progress and expansion of mankind and society for centuries. Engineering ideas that originated in the Indian subcontinent have had a thoughtful impact on the world.

All India Council for Technical Education (AICTE) had always been at the forefront of assisting Technical students in every possible manner since its inception in 1987. The goal of AICTE has been to promote quality Technical Education and thereby take the industry to a greater heights and ultimately turn our dear motherland India into a Modern Developed Nation. It will not be inept to mention here that Engineers are the backbone of the modern society - better the engineers, better the industry, and better the industry, better the country.

NEP 2020 envisages education in regional languages to all, thereby ensuring that each and every student becomes capable and competent enough and is in a position to contribute towards the national growth and development.

One of the spheres where AICTE had been relentlessly working from last few years was to provide high-quality moderately priced books of International standard prepared in various regional languages to all it's Engineering students. These books are not only prepared keeping in mind it's easy language, real life examples, rich contents and but also the industry needs in this everyday changing world. These books are as per AICTE Model Curriculum of Engineering & Technology – 2018.

Eminent Professors from all over India with great knowledge and experience have written these books for the benefit of academic fraternity. AICTE is confident that these books with their rich contents will help technical students master the subjects with greater ease and quality.

AICTE appreciates the hard work of the original authors, coordinators and the translators for their endeavour in making these Engineering subjects more lucid.

-Sapahine

(Anil D. Sahasrabudhe)

ACKNOWLEDGEMENT

The author(s) are grateful to AICTE for their meticulous planning and execution to publish the technical book for Diploma Engineering students.

We sincerely acknowledge the valuable contributions of the reviewer of the book Prof. Sunita Mukesh Patil, for making it students' friendly and giving a better shape in an artistic manner.

This book is an outcome of various suggestions of AICTE members, experts and authors who shared their opinion and thoughts to further develop the engineering education in our country.

It is also with great honour that we state that this book is aligned to the AICTE Model Curriculum and in line with the guidelines of National Education Policy (NEP) -2020. Towards promoting education in regional languages, this book is being translated in scheduled Indian regional languages.

Acknowledgements are due to the contributors and different workers in this field whose published books, review articles, papers, photographs, footnotes, references and other valuable information enriched us at the time of writing the book.

Finally, we like to express our sincere thanks to the publishing house, M/s. Khanna Book Publishing Company Private Limited, New Delhi, whose entire team was always ready to cooperate on all the aspects of publishing to make it a wonderful experience.

Anju Rawlley Devdatta Vinayakrao Saraf

PREFACE

Chemistry has been used for understanding and solving the intricacies of life. The advancement in chemistry is closely associated with the well being of all human beings and has made the life simpler and comfortable.

The textbook on "Applied Chemistry" has been developed as per AICTE model curriculum. This book is written, keeping in mind that basic concepts of chemistry should be comprehended in depth by budding diploma engineers, as these concepts may be applied in many of the engineering applications in industries and day to day life. The present text book is a sincere efforts in this direction.

Efforts have been made to make this book useful and interesting for learning, in self-learning mode. The structure of the textbook is comprehensive, wherein sixteen practical exercises are integral part of each theory units, from one to five.

Key feature of the book is that the text is presented in a very simple way with illustrations, examples, tables, flow charts, self-assessment questions with their solutions. Micro projects, points/issues for the creative inquisitiveness and curiosity, know more, video links, case study and summary points are integral part of different units to facilitate the students to develop the attitude of scientific inquiry, investigate the cause and effect relationship, systematic, scientific &logical thinking, ability to observe, analyse and interpret. All these abilities are essentially needed by diploma engineering passouts in the world of work.

Details of practicals listed in the curriculum of each unit are mentioned in a systematic format for ease of performance and implementation by students, laboratory personnel and teachers. Laboratory practical format is comprising of practical significance, relevant theory, stepwise procedure, safety precautions, sample probing questions for viva- voce etc. To meet the requirement of outcome based education (OBE) and outcome based assessment (OBA), criterion referenced testing (CRT) have been used as an integral part of assessment in each practical. For this, specific and measurable criteria of process and product assessment with their percentage weightage is included in each experiment. This would enable students, teachers and evaluators to know the criterion of performance and assessment of each experiment for attainment of out comes.

While every care has been taken to bring out this textbook error free. Nevertheless, there could inevitably be occasional errors. It would be our great pleasure to know from readers to make necessary modifications. Moreover, suggestions are welcome for the improvement of the book.

Anju Rawlley Devdatta Vinayakrao Saraf

OUTCOME BASED EDUCATION

Though, there are many challenges and issues in implementation and assessment of Outcome Based Education (OBE) and Outcome Based Curriculum (OBC), but the management and teachers need to ensure that the programme outcomes, as stated by NBA, for diploma engineering programme should be developed by the students, at the exit point of the diploma programme,through effective implementation and assessment of outcomes of different courses. The seven programme outcomes of the diploma engineering programme are as follows:

- **PO1.** Basic and Discipline Specific Knowledge: Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve the engineering problems.
- **PO2. Problem Analysis:** Identify and analyse well-defined engineering problems using codified standard methods.
- **PO3. Design/ Development of Solutions:** Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.
- **PO4.** Engineering Tools, Experimentation and Testing: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.
- **PO5.** Engineering Practices for Society, Sustainability and Environment: Apply appropriate technology in context of society, sustainability, environment and ethical practices.
- **PO6. Project Management:** Use engineering management principles individually, as a team member or a leader to manage projects and effectively communicate about well-defined engineering activities.
- **PO7.** Life-Long Learning: Ability to analyse individual needs and engage in updating in the context of technological changes.

COURSE OUTCOMES

After completion of the course the students will be able to:

- CO-1: Solve various engineering problems applying the basic concepts of atomic structure, chemical bonding and solutions.
- CO-2: Use relevant water treatment method to solve domestic and industrial problems.
- CO-3: Solve the engineering problems using concepts of engineering materials and properties.
- CO-4: Use relevant fuel and lubricants for domestic and industrial applications.
- CO-5: Solve the engineering problems using concept of electrochemistry and corrosion.

Course Outcomes	Expected Mapping with Programme Outcomes (1-Weak Correlation; 2-Medium correlation; 3-Strong Correlation)						
	PO-1	PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7					
CO-1	3	2	1	1	2	1	1
CO-2	3	3	2	3	2	3	2
CO-3	3	2	3	3	3	2	2
CO-4	3	3	2	3	3	2	2
CO-5	3	2	2	2	2	2	2

ABBREVIATIONS AND SYMBOLS

Abbreviations	Full form	Abbreviations	Full form	
C.E.	Chemical Equivalent or Equivalent Weight	TAN	Total Acid Number	
СО	Course Outcome	TEL	Tetra Ethyl Lead	
EDTA	Ethylene Diamine Tetra Acetic acid	UO	Unit Outcome	
HCV	Higher Calorific Value	VII	Viscosity Index Improvers	
LCV	Lower Calorific Value	VM	Viscosity Modifiers	
PO	Programme Outcome	Z or E.C.E.	Electrochemical Equivalent	
RCC	Reinforced Cement Concrete			

List of Abbreviations

LIST OF SYMBOLS

Symbols	Description	
n	Principal Quantum Number	
I	Angular Momentum or Azimuthal Quantum Number	
m	Magnetic Quantum Number	
m _s	Spin Quantum Number	

Units Used

Abbreviations	Full form
B.Th.U/ft ³	British Thermal Units Per Cubic Foot
B.Th.U./lb	British Thermal Units Per Pound
Cals/g	Calories Per Gram
C.H.U./lb	Centigrade Heat Unit Per Pound
٥CI	⁰Clark
°Fr	⁰French
К	Kelvin
K cals / kg	Kilocalories Per Kilogram
Kcal/m ³	Kilocalories Per Cubic Meter
mg / L	Milligrams Per Litre
meq / L	Milliequivalent Per Litre
ppm	Parts Per Million
ppt	Precipitate

LIST OF FIGURES

Unit 1

Figure Nos	Titles of Figures	Page.Nos.
Fig. 1.1	Rutherford Experiment	3
Fig. 1.1(a)	Gold Foil Experimention	3
Fig. 1.1 (b)	Scattering of α -Rays through an Atom	3
Fig. 1.2	Bohr's Representation of Forces acting on Electrons and Orbits in an At	om 4
Fig. 1.2 (a)	Electrostatic Force of Attraction between Proton and	4
	Electron Exactly equal to the Centrifugal Force	
Fig. 1.2 (b)	Structure of Bohr's Atom	4
Fig. 1.3	Jumping of an Electron after Absorbing and Emitting the Energy	5
Fig. 1.3 (a)	Electron absorb Energy & Jump to Higher Energy Level	5
Fig. 1.3 (b)	Electron Emits Energy & Jump to Lower Shell	5
Fig. 1.4.	Hydrogen Spectrum Lines due to Jumping of Electrons	6
Fig. 1.5	Shape of s-Orbitals	7
Fig. 1.6	Dumbbell Shape of p-Orbitals	8
Fig. 1.7	Double Dumbbell Shape of d-Orbitals	8
Fig. 1.8	Importance of Chemical Compounds in Daily Life	13
Fig. 1.9	Lewis Structure of Ammonia	14
Fig. 1.10	Electrovalent Bond/Ionic Bond Formation due to Transfer of Electrons	16
Fig. 1.11	Lewis Dot Structure	18
Fig. 1.12	Formation of Hydrogen Molecule	18
Fig. 1.13	Types of Covalent Bond	19
Fig. 1.14	Comparison of Electrovalent and Covalent Bonding	20
Fig. 1.15	Orbital overlap along the Axis	22
Fig. 1.16	Formation of H_2 molecule (s-s Overlapping)	22
Fig. 1.17	Formation of F_2 Molecule (p-p Overlapping)	22
Fig. 1.18	Formation of HF Molecule (s-p Overlapping)	22
Fig. 1.19	Orbital Overlap Sidewise	22
Fig. 1.20	Formation of sp ² Hybrid Orbitals and Shape of BF_3 Molecule	23
Fig. 1.21	Formation of sp ³ Hybrid Orbitals & Shape of Methane (CH_4) Molecule	23
Fig. 1.22	sp3 Hybridisation - NH ₂	24

Fig. 1.23	sp3 Hybridisation-H ₂ O	24
Fig. 1.24	Co-ordinate Bonding in NH ₄ ⁺	25
Fig. 1.25	Hydrogen Bonding in Water Molecule	26
Fig. 1.26	Inter molecular H Bonding	27
Fig. 1.27	Delocalised Electrons in Metallic Bond	29
Fig. 1.28	Solute-Solvent-Solution	31
Fig. 1.29	Concentration of Solution	31
	Unit 2	
Fig.2.1	Earths Water	50
Fig.2.2	Fresh Water	50
Fig.2.3	Surface Water	50
Fig.2.4	Sludge Formation	55
Fig. 2.5	Scale Formation	55
Fig. 2.6	Removal of Dissolved Oxygen by Heating	58
Fig. 2.7	Ethylene Diamine Tetra Acetic Acid (EDTA)	60
Fig. 2.8	Ca ²⁺ EDTA Complex	60
Fig. 2.9	Intermittent Type Softener	64
Fig. 2.10	Continuous Type Softener	64
Fig. 2.11	Continuous Type Hot Soda lime softener	65
Fig. 2.12	Zeolite Softener	65
Fig. 2.13	Demineralization of Water	69
Fig. 2.14	Sand Filter	72
Fig. 2.15	Vertical Pressure Filter	73
Fig. 2.16	Chlorinator	74
Fig. 2.17	Ozonolysis Method	76
	Unit 3	
Fig. 3.1	Ore and Mineral	95
Fig. 3.2	An Ore	95
Fig. 3.3	Crushing and Grinding of Ore	96
Fig. 3.4	Gravity Separation	97
Fig. 3.5	Froth Flotation Process	97
Fig. 3.6	Magnetic Separation	97
Fig. 3.7	Alumino Thermic Process	100
Fig. 3.8	Electrolytic Refining of Copper	101

Fig. 3.9	Reverberatory Furnace	102
Fig. 3.10	Blast Furnace	103
Fig. 3.11	Electrolysis of Bauxite	108
Fig. 3.12	Purification of Aluminium	108
	Unit 4	
Fig. 4.1	Structure of Graphite	149
Fig. 4.2	Thick Film Lubrication	151
Fig 4.3	Boundary Film Lubrication	151
Fig. 4.4	Viscosity	152
	Unit 5	
Fig. 5.1	Faraday's Second Law of Electrolysis	179
Fig. 5.2	Extraction of Sodium	181
Fig. 5.3	Electroplating	182
Fig. 5.4	Electrolytic Refining of Copper	183
Fig. 5.5	Primary Cell	185
Fig. 5.6	Lead Acid Storage Cell	186
Fig. 5.7	Hydrogen Oxygen Fuel Cell	188
Fig. 5.8	Photovoltaic Solar Cell	189
Fig. 5.9	Corrosion by Oxygen	191
Fig. 5.10	Wet or Electrochemical Corrosion	192
Fig. 5.11	Oxygen Absorption Type	193
Fig. 5.12	Sacrificial Anodic Protection Method	198
Fig. 5.13	Galvanizing (Zinc Coating on Iron)	199

LIST OF TABLES

Unit 1

Tables Nos	Titles of Tables	Page. Nos.
Table 1.1	Appearance of Hydrogen Spectrum in Different Region	6
Table 1.2	Magnetic Quantum Number	10
Table 1.3	Four Quantum Numbers for First 10 Electrons in [Ne]	10
Table 1.4	Pairing Arrangement of Electrons Permitted by Hund's Rule	11
Table 1.5	Orbital Electronic Configuration of Elements up to Atomic No. 11	12
Table 1.6	Combining Capacity of Different Elements	13
Table 1.7	Types of Bonds	15
Table 1.8	Participation of Electrons in Covalent Bond Formation	19
Table 1.9	Properties and Comparison of Electrovalent and Covalent Compounds	20
Table 1.10	Types of Hybridisation	23
Table 1.11	Difference between Hydrogen Bond and Covalent Bond	28
Table 1.12	Difference between Metallic Bond and Ionic Bond	29
	Unit 2	
Table 2.1	Difference between Soft Water and Hard Water	51
Table 2.2	Relation between Various Units of Hardness	53
Table 2.3	Difference between Sludge and Scale	56
Table 2.4	Calculation of Alkalinity of water	62
Table 2.5	Comparison between the Zeolite Process & Soda-Lime Process	67
Table 2.6	Organoleptic and Physical Parameters for Drinking Water	77
Table 2.7	Bacteriological Quality of Drinking Water	78
Table 2.8	General Parameters Concerning Substances	
	Undesirable in Excessive Amounts	78
	Unit 3	
Table 3.1	Difference between Minerals and Ore	95
Table 3.2	Ores of Iron, Aluminium and Copper	95
Table 3.3	Composition, Properties and Uses of Some Alloys of Copper	110
Table 3.4	Composition, Properties and Uses of Some Alloys of Iron	110
Table 3.5	Composition, Properties and Uses of Some Alloys of Aluminium	111

Table 3.6	Composition of Portland Cement	112
Table 3.7	Average Compound Composition of Portland Cement	112
Table 3.8	Composition of Glass	115
Table 3.9	Types of Glasses and their Uses	115
Table 3.10	Composition, Properties and Uses of Refractories	116
Table 3.11	Composite Classification Based on Types of Matrix & Reinforcement	117
Table 3.12	Polymerisation Reactions and their Uses	118
Table 3.13	Difference between Thermoplastics and Thermosetting Plastics	120
Table 3.14	Difference Between Natural Rubber and Vulcanised Rubber	121
	Unit 4	
Table 4-1	Classification of Fuels	139

Table 4.1		129
Table 4.2	Higher Calorific Values of Fuel Constituents	140
Table 4.3	Octane Rating of some Common Hydrocarbon	143
Table 4.4	Composition, Calorific Values and Applications of Fuels	144
Table 4.5	Liquid Lubricants: Classification their Properties	147
Table 4.6	Classification and Properties of Semi Solid Lubricants	148

Unit 5

Table 5.1	Strong Electrolyte & Weak Electrolyte	178
Table 5.2	Difference between Electrolytic cell and Electrochemical Cell	187
Table 5.3	Difference between Dry/ Chemical and Wet/ Electrochemical Corrosion	194

Sr.No	Name	Formula	lons present
1.	Sodium Chloride	NaCl	Na⁺ and Cl⁻
2.	Potassium Chloride	KCI	K⁺ and CI⁻
3.	Ammonium Chloride	NH ₄ Cl	NH_4^+ and CI^-
4.	Magnesium Chloride	MgCl ₂	Mg ²⁺ and Cl ⁻
5.	Calcium Chloride	CaCl ₂	Ca ²⁺ and Cl ⁻
6.	Sodium Oxide	Na ₂ O	Na ⁺ and O ²⁻
7.	Magnesium Oxide	MgO	Mg ²⁺ and O ²⁻
8.	Calcium Oxide	CaO	Ca++ and O2-
9.	Aluminium Oxide	Al ₂ O ₃	Al ³⁺ and O ²⁻
10.	Sodium Hydroxide	NaOH	Na⁺ and OH⁻
11.	Copper Sulphate	CuSO ₄	Cu ²⁺ and SO ₄ ²⁻
12.	Calcium Nitrate	Ca(NO ₃) ₂	Ca ²⁺ and NO ³⁻
13.	Aluminium Chloride	AICI ₃	Al ³⁺ and Cl [−]

Some Ionic Compounds (Electrovalent Compounds)

Some Covalent Compounds

Sr. No.	Name	Formula	Present Atoms
1.	Methane	CH4	C and H
2.	Ethane	C ₂ H ₆	C and H
3.	Ethylene	C ₂ H ₄	C and H
4.	Ethyne (Acetylene)	C ₂ H ₄ C ₂ H ₂	C and H
5.	Water	H ₂ O	H and O
6.	Ammonia	NH ₃	N and H
7.	Ethyl Alcohol (Ethanol)	C₂H₅OH	C, H and O
8.	Hydrogen Chloride Gas	HCI	H and Cl
9.	Hydrogen Sulphide Gas	H ₂ S	H and S
10.	Carbon Dioxide	CO ₂	C and O
11.	Carbon Disulphide	CS ₂	C and S
12.	Carbon Tetrachloride	CCl ₄	C and Cl
13.	Glucose	$C_{6}H_{12}O_{6}$	C, H and O
14.	Cane Sugar	C ₁₂ H ₂₂ O ₁₁	C, H and O
15.	Urea	CO(NH ₂) ₂	C, O, N and H
16.	Benzene	C ₆ H ₆	C and H
17.	Hydrogen Gas	H ₂	Н
18.	Chlorine Gas	Cl ₂	CI
19.	Oxygen gas	0 ₂	0

Sr.No	Name	Formula	lons present
1	Calcium Carbonate	CaCO ₃	Ca ²⁺ and CO ₃ ²⁻
2	Magnesium Carbonate	MgCO ₃	Mg ²⁺ and CO ₃ ²⁻
3	Calcium Bicarbonate	Ca(HCO ₃) ₂	Ca ²⁺ and HCO ₃ ⁻
4	Magnesium Bicarbonate	Mg(HCO ₃) ₂	Mg ²⁺ and HCO ₃ ⁻
5	Calcium Chloride	CaCl ₂	Ca ²⁺ and Cl ⁻
6	Magnesium Chloride	MgCl ₂	Mg ²⁺ and Cl ⁻
7	Calcium sulphate	CaSO ₄	Ca ²⁺ and SO ₄ ²⁻
8	Magnesium sulphate	MgSO ₄	Mg ²⁺ and SO ₄ ²⁻
9	Ferrous Chloride	FeCl ₂	Fe ²⁺ and Cl ⁻
10	Ferrous Sulphate	FeSO ₄	Fe ²⁺ and SO ₄ ²⁻
11	Manganese Chloride	MnCl ₂	Mn ²⁺ and CI-
12	Manganese Sulphate	MnSO ₄	Mn ²⁺ and SO ₄ ²⁻
13	Calcium Silicate	CaSiO ₃	Ca ²⁺ , Si ⁴⁺ and O ₂ ⁻
14	Magnesium Silicate	MgSiO ₃	Mg ²⁺ , Si ⁴⁺ and O ₂ ⁻
15	Sodium Carbonate	Na ₂ CO ₃	Na ⁺ and CO ₃ ²⁻
16	Sodium Sulphate	Na ₂ SO ₄	Na ⁺ and SO ₄ ²⁻
17	Potassium Chloride	KCI	K ⁺ and Cl ⁻
18	Potassium Carbonate	K ₂ CO ₃	K ⁺ and CO ₃ ²⁻
19	Potassium Sulphate	K ₂ SO ₄	K ⁺ and SO ₄ ²⁻
20	Calcium Hydrogen Phosphates	CaHPO ₄	Ca ²⁺ , HPO ₄ ²⁻

Some Common Salts Present in Water

GUIDELINES FOR TEACHERS

To implement Outcome Based Education (OBE), knowledge level and skill set of the students should be enhanced. Teachers should take a major responsibility for the proper implementation of OBE. Some of the responsibilities (not limited to) for the teachers in OBE system may be as follows:

- Within reasonable constraint, they should manoeuvre time to the best advantage of all students.
- They should assess the students only upon certain defined criterion without considering any other potential ineligibility to discriminate them.
- They should try to grow the learning abilities of the students to a certain level before they leave the institute.
- They should try to ensure that all the students are equipped with the quality knowledge as well as competence after they finish their education.
- They should always encourage the students to develop their ultimate performance capabilities.
- They should facilitate and encourage group work and team work to consolidate newer approach.
- They should follow Blooms taxonomy in every part of the assessment.

Level	Teacher should Check	Student should be able to	Possible Mode of Assessment
Creating	Students ability to create	Design or Create	Mini project
Evaluating	Students ability to Justify	Argue or Defend	Assignment
Analysing	Students ability to distinguish	Differentiate or Distinguish	Project/Lab Methodology
Applying	Students ability to use information	Operate or Demonstrate	Technical Presentation/ Demonstration
Understanding	Students ability to explain the ideas	Explain or Classify	Presentation / Seminar
Remembering	Students ability to recall (or remember)	Define or Recall	Quiz

Bloom's Taxonomy

GUIDELINES FOR STUDENTS

Students should take equal responsibility for implementing the OBE. Some of the responsibilities (not limited to) for the students in OBE system are as follows :

- Students should be well aware of each UO before the start of a unit in each and every course.
- Students should be well aware of each CO before the start of the course.
- Students should be well aware of each PO before the start of the programme.
- Students should think critically and reasonably with proper reflection and action.
- Learning of the students should be connected and integrated with practical and real life consequences.
- Students should be well aware of their competency at every level of OBE.

CONTENTS

F	Foreword		iii	
A	Acknowle	edgement	v	
F	reface		vii	
(Dutcome	Based Education	ix	
(Course O	utcomes	xi	
A	Abbreviat	ions and Symbols	xii	
Ι	List of Figures			
Ι	list of Ta	bles	xvi	
(Guideline	es for Teachers	XX	
C	Guideline	es for Students	xxi	
Unit 1:	Atom	ic Structure, Chemical Bonding and Solutions	1-47	
	Unit Sp	pecifics	1	
	Rationa	ale	2	
	Pre-req	uisites	2	
	Unit O	utcomes	2	
1.1	Atomic	Structure	2	
	1.1.1	An Introduction	2	
	1.1.2	Rutherford Model of an Atom	3	
	1.1.3	Bohr's Theory	3	
	1.1.4	Hydrogen Spectrum Explanation Based on Bohr's Model of an Atom	5	
	1.1.5	Heisenberg's Uncertainty Principle	7	
	1.1.6	Orbital Concept and Shapes of s, p, d and f Orbitals	7	
	1.1.7	Quantum Numbers	9	
	1.1.8	Pauli's Exclusion Principle	10	
	1.1.9	Hund's Rule of Maximum Multiplicity	11	
	1.1.10	Aufbau Rule	12	
	1.1.11	Electronic Configuration	12	
1.2	Chemic	cal Bonding	13	

	1.2.1	An Introduction, Concept &Causes	13
	1.2.2	Types of Bonding	15
	1.2.3	Ionic or Electrovalent Bond	15
	1.2.4	Covalent bond (H_2 , F_2 , HF hybridization in BeCl ₂ , BF ₃ , CH ₄ , NH ₃ , H ₂ O)	17
	1.2.5	Coordinate bond	25
	1.2.6	Hydrogen Bonding	26
	1.2.7	Metallic Bonding	28
1.3	Solutio	n	30
	1.3.1	An Introduction	30
	1.3.2	The idea of Solute, Solvent, and Solution	30
	1.3.3	Methods to Express the Concentration of Solution	31
	Solved	Problems	32
	Unit Sı	immary	34
	Exercis	ses	36
	Practic	als	36-44
	Know I	More	44
	Referen	nces and Suggested Readings	47
Unit 2 :	Water		48-92
	Unit Sp	pecifics	48
	Ration	ale	48
	Pre-req	uisites	49
	Unit O	utcomes	49
2.1	An Inti	roduction	49
	2.1.1	Graphical presentation of Water Distribution on Earth	50
	2.1.2	Classification of Soft and Hard Water	50
	2.1.3	Salts Causing Water Hardness	50
	2.1.4	Unit of Hardness	52
2.2	Causes	of Hard Water	53
	2.2.1	Cause of Poor Lathering of Soap in Hard Water	53
	2.2.2	Problems Caused by the Use of Hard Water in Boiler	54
	2.2.3	Quantitative Determination of Water Hardness by ETDA Method	60
2.3	Water S	Softening Techniques	62
	2.3.1	Water Softening Techniques – An Introduction	62
	2.3.2	Soda Lime Process	63
		(and a)	

	2.3.3	Zeolite Process	65
	2.3.4	Ion Exchange Process for Water Softening	68
2.4	4 Munic	cipal Water Treatment	71
	2.4.1	Municipal Water Treatment- An Introduction	71
	2.4.2	Screening	72
	2.4.3	Sedimentation	72
	2.4.4	Coagulation	72
	2.4.5	Filtration	72
	2.4.6	Disinfection / Sterilization	73
2.5	5 Indian	n Standard Specification of Drinking Water – An Introduction	77
2.6	6 Water	for Human Consumption	79
	Solved	1 Problems	80
	Unit S	Summary	82
	Exerci	ises	83
	Practi	cals	83-91
	Know	More	91
	Refere	ences and Suggested Readings	92
Unit 3	: Engin	eering Materials	93-136
	Unit S	Specifics	93
	Ratior	nale	93
	Pre-re	quisites	93
	Unit C	Dutcomes	94
3.1	Introd	luction to Natural Occurrence of Metals	94
	3.1.1	Minerals and Ores	94
	3.1.2	General Principles of Metallurgy	96
	3.1.3	Extraction of Iron from Haematite ore	102
	3.1.4	Extraction of Aluminium from Bauxite	106
	3.1.5	Alloys	109
3.2	e Gener	al Chemical Composition, Composition Based Applications	111
	3.2.1	Portland Cement	112
	3.2.2	Glasses	114
	3.2.3	Refractory	116
	3.2.4	Composite Materials	116

3.3	Polyme	ers	117
	3.3.1	Preparation of Thermoplastics and Thermosetting Plastics	118
	3.3.2	Rubber	120
	3.3.3	Vulcanization of Rubber	120
	Unit Sı	ummary	121
	Exercis	ses	122
	Practic	als	123-135
	Know	More	136
	Referen	nces and Suggested Readings	136
Unit 4 :	Chemi	stry of Fuels and Lubricants	137 -174
	Unit Sp	pecifics	137
	Ration	ale	137
	Pre-req	uisites	138
	Unit O	utcomes	138
4.1	Fuel ar	nd Combustion of Fuel- An Introduction	138
	4.1.1	Fuel and Combustion	138
	4.1.2	Classification of Fuels	139
	4.1.3	Calorific Values (HCV and LCV)	139
	4.1.4	Calculation of HCV and LCV using Dulong's formula.	140
4.2	Analys	is of Coal	141
	4.2.1	Proximate Analysis of Coal (Solid Fuel)	141
	4.2.2	Fuel rating of Petrol and Diesel (Octane and Cetane Numbers)	142
	4.2.3	Chemical Composition, Calorific Values and Applications of Fuel	144
4.3	Lubrica	ation – An Introduction	145
4.4	Function	ons of Lubricant	145
4.5	Charac	teristic Properties of Good Lubricant	146
4.6	Classifi	ication of Lubricants	146
	4.6.1	Liquid Lubricants, Classification and Properties	146
	4.6.2	Semi-solid Lubricants, Classification and Properties	148
	4.6.3	Solid Lubricants, Classification and Properties	148
	4.6.4	Emulsion	150
4.7	Mecha	nism of Lubrication	151
4.8	Physica	al Properties of Lubricant	152

	4.8.1	Viscosity	152
	4.8.2	Viscosity Index	152
	4.8.3	Oiliness	153
	4.8.4	Flash Point and Fire Point	153
	4.8.5	Cloud Point and Pour Point	154
4.9	Chemi	cal Properties of Lubricants.	154
	4.9.1	Coke Number or Carbon Residue	154
	4.9.2	Total Acid Number (TAN)	155
	4.9.3	Saponification Value (SV) or Saponification Number (SN)	156
	Unit Su	ummary	156
	Exercis	Ses	157
	Practic	als	158-173
	Know	More	174
	Referen	nces and Suggested Readings	174
Unit 5 :	Electro	o Chemistry	175–216
	Unit Sp	175	
	Ration	175	
	Pre-req	uisites	176
	Unit O	utcomes	176
5.1	An Int	roduction	176
	5.1.1	Electronic Concept of Oxidation-Reduction	176
5.2	Electro	lytes and Non Electrolytes	178
	5.2.1	Electrolytes	178
	5.2.2	Non Electrolytes	179
	5.2.3	Faradays Laws of Electrolysis	179
5.3	Industr	rial Application of Electrolysis	181
	5.3.1	Electrometallurgy	181
	5.3.2	Electroplating	182
	5.3.3	Electrolytic refining.	183
5.4	Applica	ation of Redox Reactions in Electrochemical Cells	184
	5.4.1	Primary cells – Dry cell	184
	5.4.2	Secondary cell	185
	5.4.2	(A) Lead Acid Storage Cell	185

	5.4.2	(B) Fuel Cell	187
	5.4.2	(C) Solar Cells.	189
5.5	Corrosi	on – An Introduction	190
	5.5.1	Dry or Chemical Corrosion	191
	5.5.2	Wet or Electrochemical Corrosion	192
5.6	`Factor	s influencing Rate of corrosion.	194
	5.6.1	Nature of Metals	194
	5.6.2	Nature of Corroding Environment	195
5.7	Interna	1 Corrosion Preventive Measures	196
	5.7.1	Purification	196
	5.7.2	Alloying	196
	5.7.3	Heat Treatment	197
5.8	Externa	al Corrosion Preventive Measures	197
	5.8.1	Cathodic Protection	197
	5.8.2	Anodic Protection	198
	5.8.3	Organic Inhibitors	199
	Solved	Problems	200
	Unit Su	Immary	201
	Exercis	es	202
	Practica	als	202-215
	Know I	More	215
	Referen	ces and Suggested Readings	216
	Append	lices	217-218
	Append	lix- A : Records for Practicals	217
	Annexu	ires	219-221
	Annexu	are - I General, Specific Instructions and Common Laboratory Glasswares	219
	Referen	ces for further learning	222
	CO-PO	Attainment Table	223
	Index		225-227